lunes, 12 de noviembre de 2012

OPTICA FISICA

 
optica fisica
 
 
 
 
 
 
 
presentado por:Karen Garcia
                     Flor Urrego
                          Diana Barajas
 
 
 
 
 
 
presentado a:Patricia chacon
 
 
 
 
 
IED  jose de san martin
fisica-calculo
oncea j.m.
Tabio-Cundinamarca
2012
 
 
 
 
 
 
 
 
OPTICA FISICA
 
 
 


Qué es la óptica física y cuáles son sus fenómenos?

La óptica física es la rama de la óptica que toma la luz como una onda y explica algunos fenómenos que no se podrían explicar tomando la luz como un rayo. Estos fenómenos son:

Difracción: es la capacidad de las ondas para cambiar la dirección alrededor de obstáculos en su trayectoria, esto se debe a la propiedad que tienen las ondas de generar nuevos frentes de onda.

Polarización: es la propiedad por la cual uno o más de los múltiples planos en que vibran las ondas de luz se filtra impidiendo su paso. Esto produce efectos como eliminación de brillos.




¿Qué es el principio de Arquímedes?

R/ El principio de Arquímedes se puede enunciar de la siguiente forma: Un objeto que está sumergido en un fluido experimenta una fuerza de abajo hacia arriba (empuje) igual al peso del fluido desalojado.

F = fuerza de empuje


mg = peso del fluido desalojado por la moneda

El principio de Arquímedes explica la flotabilidad de los barcos.



¿Qué es la ley de Pascal?

R/ La ley de pascal establece que una presión externa aplicada a un fluido confinado se transmite uniformemente a través del volumen del fluido.
Este principio explica el funcionamiento de la prensa hidráulica.



¿Qué es la luz?

Ha sido una de las definiciones mas trabajadas a través de la historia de la ciencia, muchas teorías se han planteado hasta llegar a la actual que define a la luz como partículas radiantes llamadas fotones y que son la mínima expresión de luz, estos fotones se transmiten en un campo ondulatorio electromagnético. Así la luz tiene una dualidad, es onda y partícula a la vez, los fenómenos de propagación se pueden explicar con teoría ondulatoria y los fenómenos de interacción de la luz con la materia se pueden explicar con un modelo de fotones.



 
 
 
 
OPTICA GEOMETRICA

 
El estudio de las imágenes, producidas por refracción o por reflexión de la luz se llama óptica geométrica. La óptica geométrica se ocupa de loas trayectorias de los rayos luminosos, despreciando los efectos de la luz como movimiento ondulatorio, como las interferencias. Estos efectos se pueden despreciar cuando el tamaño la longitud de onda es muy pequeña en comparación de los objetos que la luz encuentra a su paso.
Para estudiar la posición de una imagen con respecto a un objeto se utilizan las siguientes definiciones:



  • Eje óptico. Eje de abscisas perpendicular al plano refractor. El sentido positivo se toma a la derecha al plano refractor, que es el sentido de avance de la luz.
  • Espacio objeto. Espacio que queda a la izquierda del dioptrio.
  • Espacio imagen. Espacio que queda a la derecha del dioptrio.
  • Imagen real e imagen virtual. A pesar del carácter ficticio de una imagen se dice que una imagen es real si está formada por dos rayos refractados convergentes. Una imagen real se debe observar en una pantalla. Se dice que es virtual si se toma por las prolongaciones de dos rayos refractados divergentes.

Dos puntos interesantes del eje óptico son el foco objeto y el foco imagen:
  • Foco objeto. Punto F del eje óptico cuya imagen se encuentra en el infinito del espacio imagen.
  • Foco imagen. Punto F´ del eje óptico que es la imagen de un punto del infinito del espacio objeto.

 

LA PROPAGACION DE LA LUZ

La luz emitida por las fuentes luminosas es capaz de viajar a través de materia o en ausencia de ella, aunque no todos los medios permiten que la luz se propague a su través. Desde este punto de vista, las diferentes sustancias materiales se pueden clasificar en opacas, transparentes y traslucidas. Aunque la luz es incapaz de traspasar las opacas, puede atravesar las otras. Las sustancias transparentes tienen, además, la propiedad de que la luz sigue en su interior una sola dirección. Este es el caso del agua, el vidrio o el aire. En cambio, en las traslucidas la luz se dispersa, lo que da lugar a que a través de ellas no se puedan ver las imágenes con nitidez. El papel vegetal o el cristal esmerilado constituyen algunos ejemplos de objetos traslúcidos.
En un medio que además de ser transparente sea homogéneo,es decir, que mantenga propiedades idénticas en cualquier punto del mismo, la luz se propaga en línea recta. Esta característica, conocida desde la antigüedad, constituye una ley fundamental de la óptica geométrica. Dado que la luz se propaga en línea recta, para estudiar los fenómenos ópticos de forma sencilla, se acude a algunas simplificaciones útiles. Así, las fuentes luminosas se consideran puntuales, esto es, como si estuvieran concentradas en un punto, del cual emergen rayos de luz o líneas rectas que representan las direcciones de propagación. Un conjunto de rayos que parten de una misma fuente se denomina haz. Cuando la fuente se encuentra muy alejada del punto de observación, a efectos prácticos,los haces se consideran formados por rayos paralelos. Si por el contrario la fuente está próxima la forma del haz es cónica.

Velocidad e índice de refracción

La velocidad con que la luz se propaga a través de un medio homogéneo y transparente es una constante característica de dicho medio, y por tanto, cambia de un medio a otro. En la antigüedad se pensaba que su valor era infinito, lo que explicaba su propagación instantánea. Debido a su enorme magnitud la medida de la velocidad de la luz c ha requerido la invención de procedimientos ingeniosos que superarán el inconveniente que suponen las cortas distancias terrestres en relación con tan extraordinaria rapidez. Métodos astronómicos y métodos terrestres han ido dando resultados cada vez más próximos.
En la actualidad se acepta para la velocidad de la luz en el vacío el valor c = 300 000 km/s. En cualquier medio material transparente la luz se propaga con una velocidad que es siempre inferior a c. Así, por ejemplo, en el agua lo hace a 225 000 km/s y en el vidrio a 195 000 km/s. En óptica se suele comparar la velocidad de la luz en un medio transparente con la velocidad de la luz en el vacío, mediante el llamado índice de refracción absoluto n del medio: se define como el cociente entre la velocidad c de la luz en el vacío y la velocidad v de la luz en el medio, es decir:
N = c/v(14.1)
Dado que c es siempre mayor que v, n resulta siempre mayor o igual que la unidad. Conforme se deduce de la propia definición cuanto mayor sea el índice de refracción absoluto de una sustancia tanto más lentamente viajará la luz por su interior. Si lo que se pretende es comparar las velocidades v1 y v2 de dos medios diferentes se define entonces el índice de refracción relativo del medio 1 respecto del 2 como cociente entre ambas:
n12 = n1/n2(14.2)
o en términos de índices de refracción absolutos,
n12 = (c/v1)/(c/v2) Þ n12 = n2/n1(14.3)
Un índice de refracción relativo n12 menor que 1 indica que en el segundo medio la luz se mueve más rápidamente que en el primero.

La reflexión de la luz

Al igual que la reflexión de las ondas sonoras, la reflexión luminosa es un fenómeno en virtud del cual la luz al incidir sobre la superficie de los cuerpos cambia de dirección, invirtiéndose el sentido de su propagación. En cierto modo se podría comparar con el rebote que sufre una bola de billar cuando es lanzada contra una de las bandas de la mesa. La visión de los objetos se lleva a cabo precisamente gracias al fenómeno de la reflexión. Un objeto cualquiera, a menos que no sea una fuente en sí mismo,permanecerá invisible en tanto no sea iluminado. Los rayos luminosos que provienen de la fuente se reflejan en la superficie del objeto y revelan al observador los detalles de su forma y su tamaño.
De acuerdo con las características de la superficie reflectora, la reflexión luminosa puede ser regular o difusa. La reflexión regular tiene lugar cuando la superficie es perfectamente lisa. Un espejo o una lámina metálica pulimentada reflejan ordenadamente un haz de rayos conservando la forma del haz. La reflexión difusa se da sobre los cuerpos de superficies más o menos rugosas. En ellas un haz paralelo, al reflejarse, se dispersa orientándose los rayos en direcciones diferentes. Esta es la razón por la que un espejo es capaz de reflejar la imagen de otro objeto en tanto que una piedra, por ejemplo, sólo refleja su propia imagen.
Sobre la base de las observaciones antiguas se establecieron las leyes que rigen el comportamiento de la luz en la reflexión regular o especular. Se denominan genéricamente leyes de la reflexión. Si S es una superficie especular (representada por una línea recta rayada del lado en que no existe la reflexión), se denomina rayo incidente al que llega a S, rayo reflejado al que emerge de ella como resultado de la reflexión y punto de incidencia O al punto de corte del rayo incidente con la superficie S. La recta N,perpendicular a S por el punto de incidencia, se denomina normal.
El ángulo de incidencia ε es el formado por el rayo incidente y la normal. El ángulo de reflexión ε ´ es el que forma la normal y el rayo reflejado. Con la ayuda de estos conceptos auxiliares pueden anunciarse las leyes de la reflexión en los siguientes términos:
1.ª Ley. El rayo incidente, la normal y el rayo reflejado se encuentran sobre un mismo plano.
2.ª Ley. El ángulo de incidencia es igual al ángulo de reflexión (ε = ε ´).   










 

La refracción de la luz

Se denomina refracción luminosa al cambio que experimenta la dirección de propagación de la luz cuando atraviesa oblicuamente la superficie de separación de dos medios transparentes de distinta naturaleza. Las lentes, las máquinas fotográficas, el ojo humano y, en general, la mayor parte de los instrumentos ópticos basan su funcionamiento en este fenómeno óptico.
El fenómeno de la refracción va, en general, acompañado de una reflexión, más o menos débil, producida en la superficie que limita los dos medios transparentes. El haz, al llegar a esa superficie límite, en parte se refleja y en parte se refracta, lo cual implica que los haces reflejado y refractado tendrán menos intensidad luminosa que el rayo incidente. Dicho reparto de intensidad se produce en una proporción que depende de las características de los medios en contacto y del ángulo de incidencia respecto de la superficie límite. A pesar de esta circunstancia, es posible fijar la atención únicamente en el fenómeno de la refracción para analizar sus características.

Las leyes de la refracción

Al igual que las leyes de la reflexión, las de la refracción poseen un fundamento experimental. Junto con los conceptos de rayo incidente, normal y ángulo de incidencia, es necesario considerar ahora el rayo refractado y el ángulo de refracción o ángulo que forma la normal y el rayo refractado.
Sean 1 y 2 dos medios transparentes en contacto que son atravesados por un rayo luminoso en el sentido de 1 a 2 y ε 1 y ε 2 los ángulos de incidencia y refracción respectivamente. Las leyes que rigen el fenómeno de la refracción pueden, entonces, expresarse en la forma:
1.ª Ley. El rayo incidente, la normal y el rayo refractado se encuentran en el mismo plano.
2.ª Ley. (ley de Snell) Los senos de los ángulos de incidencia ε 1 y de refracción ε 2 son directamente proporcionales a las velocidades de propagación v1 y v2 de la luz en los respectivos medios.
sen ε 1/sen ε 2 = v1/v2 (14.4)
Recordando que índice de refracción y velocidad son inversamente proporcionales (14.1) la segunda ley de la refracción se puede escribir en función de los índices de refracción en la forma:
sen ε 1/sen ε 2 = (c/n1)/(c/n2) = n2/n1
o en otros términos:
n1.sen ε 1 = n2.sen ε 2 = constante(14.5)
Esto indica que el producto del seno del ángulo ε por el índice de refracción del medio correspondiente es una cantidad constante y, por tanto, los valores de n y sen ε para un mismo medio son inversamente proporcionales. Debido a que la función trigonométrica seno es creciente para ángulos menores de 90°, de la última ecuación (14.5) se deduce que si el índice de refracción ni del primer medio es mayor que el del segundo n2, el ángulo de refracción ε 2 es mayor que el de incidencia ε 1 y, por tanto, el rayo refractado se aleja de la normal.
Por el contrario, si el índice de refracción n1 del primer medio es menor que el del segundo n2, el ángulo de refracción ε 2 es menor que el de incidencia el y el rayo refractado se acerca a la normal. Estas reglas prácticas que se deducen de la ecuación (14.5) son de mucha utilidad en la representación de la marcha de los rayos, operación imprescindible en el estudio de cualquier fenómeno óptico desde la perspectiva de la óptica geométrica.
La refringencia de un medio transparente viene medida por su índice de refracción. Los medios más refringentes son aquellos en los que la luz se propaga a menor velocidad; se dice también que tienen una mayor densidad óptica. Por regla general, la refringencia de un medio va ligada a su densidad de materia, pues la luz encontrará más dificultades para propagarse cuanta mayor cantidad de materia haya de atravesar para una misma distancia. Así pues, a mayor densidad, menor velocidad y mayor índice de refracción o grado de refringencia.    



 
 
 
 
 
 
SISTEMAS RESONANTES





La acústica es la ciencia que estudia los diversos aspectos relativo al sonido, particularmente los fenómenos de generación, propagación y recepción de las ondas sonoras en diversos medios, así como su transducción, su percepción y sus variadas aplicaciones tecnológicas.



El interés por la acústica se ha incrementado debido a las diferentes formas novedosas para transmitir, registrar y reproducir sonido, para producirlo es necesario tener unos sistemas resonantes que son un conjunto de fenómenos relacionados con los movimientos periódicos o cuasi periódicos en que se produce reforzamiento de una oscilación al someter el sistema a oscilaciones de una frecuencia determinada.

El sistema resonante para poder producir estas oscilaciones necesita de tres fuentes importantes las cuales están encargadas para producir estos movimientos: el sonido, las cuerdas y los tubos sonoros.
 
 
Los tubos de caña o de otras plantas de tronco hueco, constituyeron los primeros instrumentos musicales. Emitían sonido soplando por un extremo. El aire contenido en el tubo entraba en vibración emitiendo un sonido.Las versiones modernas de estos instrumentos de viento son las flautas, las trompetas y los clarinetes, todos ellos desarrollados de forma que el intérprete produzca muchas notas dentro de una amplia gama de frecuencias acústicas.El órgano es un instrumento formado por muchos tubos en los que cada tubo da una sola nota. El órgano de la sala de conciertos de La Sydney Opera House terminado en 1979 tiene 10500 tubos controlados por la acción mecánica de 5 teclados y un pedalero.El tubo de órgano es excitado por el aire que entra por el extremo inferior. El aire se transforma en un chorro en la hendidura entre el alma (una placa transversal al tubo) y el labio inferior. El chorro de aire interacciona con la columna de aire contenida en el tubo. Las ondas que se propagan a lo largo de la corriente turbulenta mantienen una oscilación uniforme en la columna de aire haciendo que el tubo suene.
Ya hemos visto en este capítulo como son las ondas estacionarias en una cuerda. Ahora veremos las ondas estacionarias que se producen en los tubos abiertos o cerrados por un extremo.

Tubos abiertos


Tubo abierto
Tubo abierto por los dos eXtremos

tubo abierto
Tubo abierto por los dos extremos segunda forma de vibración
Tubo abierto
Tubo abierto por los dos extremos tercera forma de vibración
Si un tubo es abierto, el aire vibra con su máxima amplitud en los extremos. En la figura, se representan los tres primeros modos de vibración
Como la distancia entre dos nodos o entre dos vientres es media longitud de onda. Si la longitud del tubo es L, tenemos que
L=λ /2, L=λ , L= /2, … en general L=nλ/2, n=1, 2, 3… es un número entero
Considerando que λ =vs/f (velocidad del sonido dividido la frecuencia)
Las frecuencias de los distintos modos de vibración responden a la fórmula
Tubos cerrados
tubo abierto
Tubo cerrado por un extrmo, primera forma de vibración
Tubo cerrado
Tubo cerrado por un extremo, segunda forma de vibración
Tubo cerrado
Tubo cerrado por un extremo, tercera forma de ibración
Si el tubo es cerrado se origina un vientre en el extremo por donde penetra el aire y un nodo en el extremo cerrado. Como la distancia entre un vientre y un nodo consecutivo es λ/4. La longitud L del tubo es en las figuras representadas es L/4, L=/4, L= /4
En general L=(2n+1)λ/4; con n=0, 1, 2, 3, …
Las frecuencias de los distintos modos de vibración responden a la fórmula
Efecto Doppler acústico
Cuando la fuente de ondas y el observador están en movimiento relativo con respecto al medio material en el cual la onda se propaga, la frecuencia de las ondas observadas es diferente de la frecuencia de las ondas emitidas por la fuente. Este fenómeno recibe el nombre de efecto Doppler en honor a su descubridor.
En primer lugar, vamos a observar el fenómeno, y después obtendremos la fórmula que relaciona la frecuencia de las ondas observadas con la frecuencia de las ondas emitidas, la velocidad de propagación de las ondas vs, la velocidad del emisor vE y la velocidad del observador vO.
Consideraremos que el emisor produce ondas de forma continua, pero solamente representaremos los sucesivos frentes de ondas, circunferencias centradas en el emisor, separados por un periodo, de un modo semejante a lo que se puede observar en la experiencia en el laboratorio con la cubeta de ondas. En la simulación más abajo, fijaremos la velocidad de propagación del sonido en una unidad vs=1, y el periodo de las ondas sea también la unidad, P=1, de modo que los sucesivos frentes de onda se desplazan una unidad de longitud en el tiempo de un periodo, es decir, la longitud de las ondas emitidas es una unidad, l =vsP.

 ESPEJOS CONCAVOS Y CONVEXOS
 
 
 
 
Los espejos son aquellos instrumentos que permiten reflejar una imagen perteneciente al mundo real. Están hechos de una lámina de cristal cubierta de mercurio, azogue, aluminio o plata. Aquello que se refleje en su superficie compone imágenes virtuales o reales.
Existen distintos tipos de espejos según las características que presenten:
Planos: estos espejos presentan una superficie lisa sumamente pulida. La imagen que dan estos espejos es como si el objeto reflejado se ubicara por detrás de la superficie del mismo, y no enfrente, como si se encontrara en el interior del mismo. Es por esto que se dice que la imagen que crea es virtual. Además, la imagen se caracteriza por ser simétrica, de igual tamaño al del objeto reflejado, derecha, es decir que mantiene la misma orientación que el reflejo La luz que se refleja en el espejo plano cumple con las leyes de la reflexión
 
Cóncavos: estos espejos se caracterizan por tener su superficie en forma de paraboloide donde su lado reflexivo se ubica en el interior del mismo, es decir dentro de su curvatura. En estos espejos, la ley de reflexión se cumple sólo cuando los rayos de luz que son emanados por el objeto son paralelos al eje central del espejo. Los espejos cóncavos pueden mostrar imágenes reales y virtuales. La primera se da cuando la imagen se encuentra del mismo lado que el objeto, en relación al espejo. La virtual, como se mencionó anteriormente, muestra al objeto y a la imagen en lados diferentes. Las características de la imagen, ya sea la orientación, distancia y altura son determinadas por la distancia en la que se ubique el objeto respecto del espejo.
Convexos: en estos espejos, que también son una porción esférica, su parte reflexiva se ubica al exterior del mismo. No muestran imágenes reales porque los rayos de luz emanados del objeto no se intersecan entre sí, sino que se divergen tras rebotar, por lo tanto, imágenes que reflejan son siempre virtuales

 
 Formación de imágenes
 


En los espejos convexos siempre se forma una imagen virtual y derecha con respecto al objeto:






En los espejos cóncavos, si el objeto se encuentra a una distancia superior a la distancia focal se forma una imagen real e invertida que puede ser mayor o menor que el objeto :





Si el objeto se encuentra a una distancia inferior a la distancia focal, se forma una imagen virtual y derecha con respecto al objeto:




 
 
 
 
 

No hay comentarios:

Publicar un comentario